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PERFORMANCE OF A MULTIGRID CALCULATION 

EXPANSION FLOWS 
PROCEDURE IN THREE-DIMENSIONAL SUDDEN 

S. P. VANKA 

Components Technology Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, U.S.A. 

SUMMARY 

The performance of a recently developed calculation procedure for steady incompressible flows is assessed in a 
variety of three-dimensional sudden expansion type flows representative of those encountered in several types 
of industrial equipment. The calculation procedure, called here BLIMM (for block-implicit multigrid method), 
is based on a coupled solution of the three-dimensional momentum and continuity equations in primitive 
variables, using the multigrid technique. Different Reynolds numbers and finite difference grids are considered 
for each flow situation. The rates of convergence and the computational times are reported for each case. 
KEY WORDS Multigrids Laminar Flow Sudden Expansions 

INTRODUCTION 

In the last decade, computational fluid mechanics has occupied an important role in the design of 
many types of fluid flow equipment. In order to understand in detail the transport processes inside 
the flow passages, it is now becoming popular and beneficial to solve the governing partial 
differential equations numerically. A variety of flows which are steady or unsteady, laminar or 
turbulent, and incompressible or compressible have been considered in earlier studies. ' q 2  For 
flows which are turbulent and/or reacting, physical models representing the macro behaviour 
of the processes are included in addition to the fluid flow equations. Such computational models 
have found application in various mechanical, aerospace, chemical, biological and environmental 
disciplines of fluid mechanics research. 

One of the main goals of research in computational fluid dynamics is to provide reliable, 
accurate and economical solutions to the governing (partial differential) equations formulated 
to represent an industrial flow process. Decreases in computer time and storage requirements 
not only provide monetary benefits but also permit quick designs to be performed. Also, efficient 
solution of the equations means that a larger number of finite difference nodes that is 
usually necessary for establishing grid independency of the solution can be practically 
employed. However, despite many recent advances in computational fluid mechanics, accurate 
calculation of practical three-dimensional flows remains a difficult task. This is because in three 
dimensions the number of finite difference (or finite-element) nodes needed to represent the 
differential equations accurately can be as large as one or two million (say 100 x 100 x 100). 
Such calculations require very large computer times and storage. Also, in many cases, the rate 
of convergence is inferior to that of an equivalent two-dimensional calculation. Because of the 
practical occurrence of three-dimensional flows, research in solving the relevant partial differential 
equations efficiently is of significant importance. 

027 1-209 1/86/070459- 19$09.50 
0 1986 by John Wiley & Sons, Ltd. 

Received 26 November 1985 
Revised 21 January 1986 



YM
M

ET
RY

 L
IN

ES
 

--I 
H

I4
 t
- 

Fi
gu

re
 l(

a)
. 

La
m

in
ar

 th
re

e-
di

m
en

sio
na

l s
ud

de
n 

ex
pa

ns
io

n 
Fi

gu
re

. l
(b

). 
La

m
in

ar
 th

re
e-

di
m

en
sio

na
l b

lu
nt

 b
as

e 
flo

w
 

t
 

L
 

H 

Fi
gu

re
 l(

c)
. M

od
el

 si
de

-in
le

t c
om

bu
sto

r 
Fi

gu
re

 l(
d)

. R
ec

ta
ng

ul
ar

 b
ox

 w
ith

 d
ia

go
na

lly
 o

pp
os

ite
 in

let
s 



THREE-DIMENSIONAL SUDDEN EXPANSION FLOWS 46 1 

The present paper deals with the evaluation of a recently developed finite difference calculation 
procedure3 for steady three-dimensional flows. The procedure solves the steady form of the 
Navier-Stokes equations in the primitive variable formulation in a coupled block-implicit manner 
using the multigrid t e~hn ique .~  The coupled (simultaneous) solution eliminates the need for the 
pressure or pressure correction equation by retaining the continuity equation in its primitive form 
in terms of velocities. Because of the coupling, the local mass continuity is implicitly satisfied during 
the calculation of the velocities. The use of the multigrid technique is advantageous on line grids 
(commonly necessary for grid independent solution) because it maintains the same rate of 
convergence as on the coarser grids. Such a coupled multigrid solution was observed to be rapidly 
convergent in the calculation of the viscous flow in a driven cubic ~ a v i t y . ~  

In this study, this earlier reported procedure is evaluated in a number of more complex flow 
situations representative of those encountered in industrial equipment. Four flow situations, 
sketched in Figure 1, are considered. They are: 

(i) flow in a three-dimensional sudden expansion 
(ii) flow over a blunt body 

(iii) flow in a rectangular box 
(iv) a model side-inlet combustor. 

These situations represent, in a simplified way, several practical flows, such as those in furnaces, 
ramjet and gas turbine combustors, heat exchangers and the flame stabilization phenomena 
behind blunt bodies. For each flow situation two or three Reynolds numbers and two or three grids 
are considered. The rate of convergence of the algorithm is studied in detail. For the purpose of this 
study, all flows are considered to be laminar, incompressible and of uniform density. 

SOLUTION PROCEDURE 

The details of the currently used calculation procedure have been recently rep0rted.j In this paper, 
therefore, only the important aspects of the procedure and its extension to general boundary 
conditions are described. The flows considered here are governed by the steady, laminar 
incompressible Navier-Stokes equations in their fully elliptic form. These equations in Cartesian 
co-ordinates are: 

x-momentum 

y-momentum 

z-momentum 

Mass continuity 
au/ax + au/ay + aw/az = 0. 
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The boundary conditions for these equations are different for each flow situation and consist of 
both Dirichlet (fixed values) and Neuman conditions. At the outflow boundaries, extrapolative 
conditions (with zero derivatives) are used. The finite difference forms of the above differential 
equations are derived by integrating them over discrete control volumes in the flow domain. A 
staggered mesh system is used in which the discrete velocities are located on the faces of the finite 
difference cells and the discrete pressures are situated at the cell centres. The hybrid differencing 
scheme' is used to finite difference the differential expressions. In this well-known scheme, both 
first arid second' derivatives are initially written in terms of central differences. However, for 
stability reasons, in regions where the cell Reynolds number is greater than two, the convective 
term in the corresponding flow direction is expressed by an 'upwind' formulation and the 
diffusional flux is made zero. This practice ensures that the finite difference equation remains stable 
and correctly depicts the variation of the interface value with the local Reynolds number. Although 
the hybrid differencing is only first-order accurate at high Reynolds numbers and thus is diffusive, it 
has been used in a number of earlier studies because currently it offers the best compromise 
between accuracy and stability. Other alternative  scheme^^,^ offer formally better accuracy; 
however, so far the experience has been that they slow down the rate of convergence significantly 
and generate over- and undershoots in the transport variables.* 

The finite difference equations, expressed per unit volume (for convenience in the use of the 
multigrid technique), can be written in the general form 

A p 4 p  = CiAi4 ,  + s4, ( 5 )  

where 4 stands for u, u or w, and S is the pressure gradient term in the appropriate direction. The 
summation is over all the neighbour values of point P in the x', x-, y' ,  y - ,  z+ and z- directions. 
The coefficients A ,  and Ai  represent the combined effects of convection and diffusion. Expressions 
for the coefficients are given in several earlier works and also in Reference 3. 

The continuity equation is differenced in its primitive form in terms of velocities. Thus, it is 
written as 

(2.4,. - U x - ) / 6 X  + (uy+ - u,-)/6y + (wz+ - w,.)/6z = 0, (6) 
where the + and - subscripts refer to the sides of a cell surrounding a finite difference node. 6x, 6 y  
and 6 z  represent the mesh sizes in the three directions. 

The current solution algorithm, BLIMM, differs in two major aspects from several others earlier 
reported in the literature for internal flows (e.g. SIMPLE, SIMPLER,' CELS9). The two salient 
features in the present algorithm are the use of the multigrid technique of Brandt4 and the coupled 
relaxation of the momentum and continuity equations without deriving an equation for pressure 
or pressure correction. In relation to the works of Fuchs and Zhao" who employ Brandt's4 
distributive Gauss-Seidel technique, the present relaxation operator implicitly retains the 
pressure-velocity coupling between the momentum and continuity equations. Such a relaxation 
operator is followed on the basis of several recent experiences"-'4 that the precise treatment of 
pressure-velocity coupling plays an important role in the rate of convergence, at least in viscous 
internal flows. 

The concept of using multiple grids is well known.4 Basically, any unconverged solution to a set 
of discrete elliptic equations contains errors of a wide range of frequencies. Traditional single grid 
iterative schemes such as Gauss-Seidel, ADI, etc. are efficient in annihilating errors of wavelengths 
comparable to the mesh size, but their convergence for low frequency errors is quite slow. However, 
frequencies small on one grid are relatively large on a coarser grid. Thus, cycling between the fine 
grid and a series of coarse grids can annihilate errors of all frequencies in an optimal way. 

Several variants of multigrid cycling are possible. The present technique uses the full- 
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approximation-storage-full-multigrid (FAS-FMG) cycle suitable for non-linear problems. An 
adaptive strategy is used for switching between grids. Briefly, the procedure is as follows. After the 
finest grid is prescribed, a series of coarse grids is generated by successively doubling the mesh size 
in all three directions. The solution is then started on the coarsest grid. For this grid, the solution to 
the complete non-linear problem is sought to a prescribed accuracy. This solution is then 
'prolongated' (extrapolated) to the next finer grid. Iterations are then made on this second grid 
until the high frequency errors are smoothed out. At this stage, the solution and the residuals in the 
equations are restricted to the coarser grid and the non-linear problem is solved with the residuals 
added to the right hand side. The modified coarse grid equation is 

(7) 

where L' and L2 are the non-linear operators on grids 1 and 2. 1: is the restriction operator for 
interpolating grid 2 values to grid 1. The second term on the right hand side is the restricted residual 
of grid 2. Equation (7) is then solved to a prescribed accuracy, after which the result is used to 
correct the solution on grid 2. The grid 2 values are corrected by adding to them the difference 
between the solution of equation (7) and the originally restricted grid 2 values. Thus 

(8) 
where q' and q2 represent the solution vectors on grids 1 and 2.1: is the prolongation operator to 
extrapolate values from grid 1 to grid 2. Note that in this correction phase, only the change and not 
the solution (q') is prolongated. 

The corrected solution from equation (8) is then further iterated until the high frequency errors 
are again smoothed. The remaining residuals are again restricted to grid 1 and annihilated. The 
restrictions and prolongations are so continued until the solution on grid 2 is obtained to a desired 
prespecified accuracy. The solution on grid 2 is then used to obtain the first estimate of the solution 
on grid 3. After the high frequency errors on grid 3 are removed, the residuals are restricted to 
grid 2 and smoothed on grids 2 and 1. The solution on grid 3 is obtained by cycling between 
grids 3 ,2  and 1. Progressively finer and finer grids are considered in sequence until the solution on 
the finest grid is obtained. 

L'q' = F' + I: (F2 - L2 9 )? 

2 9 ,ew = q:kI + wll - Gq:,d)? 

Relaxation procedure 

The finite difference equations on any grid are solved simultaneously by a point Gauss-Seidel 
procedure. At each node, the momentum equations corresponding to the velocities on all the six 
faces of the cell and the continuity equation are solved in a coupled manner. The equations are 
linearized about the existing values (i.e. the A coefficients in equation (5) are evaluated from 
velocities in computer store), and a set of seven linear equations for the corrections is solved by 
inverting a bordered matrix. This symmetrical coupled Gauss-Seidel (SCGS) scheme is found to 
have a faster convergence rate uis-ri-uis an unsymmetrical coupled operator in which only three 
velocities corresponding to the minus or plus side faces are solved along with the continuity 
equation. The solution of all the six velocities of any given cell is not any more expensive than the 
solution of only three velocities because the central coefficients are stored and reused. In order to 
maintain numerical stability, the central coefficients are divided by an under-relaxation factor CI. 

Complete details of the present solution algorithm are given by Vanka.3 

Restriction and prolongation 
Restriction refers to the process of evaluating coarse grid residuals and solution from fine grid 

values. Prolongation is the opposite process of obtaining fine grid values and corrections from 



464 S. P. VANKA 

coarse grid solution. In a full coarsening strategy, the coarse grid is obtained by doubling the mesh 
size of the next finer grid in all the three directions. Thus the number of finite difference cells is 
decreased by a factor of eight. Because of the use of a staggered mesh arrangement, different 
relations are necessary for each of the three velocity components and the pressure. To obtain a 
coarse grid velocity four fine grid values are averaged. For the pressure eight nearby fine grid 
pressures are averaged with equal weights. The relations are quite straightforward and can be 
found in Reference 3. For extrapolating the solution as well as the changes from the coarse grid to 
the next finer grid, a trilinear relation is used. Eight fine grid values are derived from eight 
surrounding coarse grid values by assuming a linear variation along each direction. These relations 
are also given in Reference 3. 

An alternative to full coarsening is semi or S-~oarsening.~ S-coarsening is advantageous in flows 
where the streamlines are strongly aligned with one of the co-ordinate directions. In such flows, 
point relaxation schemes such as the one used here can be slow in convergence. Therefore line or 
plane relaxation schemes may be necessary for rapid smoothing of the high frequency components. 
However line or plane relaxation schemes are expensive because they involve some form of 
Gaussian elimination. As an alternative to line and plane relaxation, semi-coarsening can be 
employed. In semi-coarsening, the grid is coarsened only in the two directions normal to the 
predominant flow direction. Thus the grid spacing in the predominant flow direction is retained as 
that of the finest grid. The number of cells in a coarse grid is only a quarter (rather than an 
eighth) of the number in the next finer grid. Therefore, the CPU time and storage for the coarse 
grid iterations are larger for semi-coarsening than for full coarsening. However, this can be 
compensated for by a reduction in the number of fine grid iterations, owing to better asymptotic 
convergence. 

The relations for restriction and prolongation for semi-coarsening are similar to those for a two- 
dimensional calculation. Thus, two fine grid values (in the plane of coarsening) are averaged to 
obtain one coarse grid velocity or a coarse grid residual in the momentum equations. For pressure 
and continuity residuals four (instead of eight) fine grid values are averaged. In prolongation, four 
pressures (or changes) of a coarse grid give four fine grid values, and two coarse grid velocities (or 
changes) give correspondingly prolongated fine grid velocities. 

The flow situations considered in this study are highly complex flows, containing mixed regions 
of streamline alignment and flow recirculation. For example, in the sudden expansion flow of 
Figure l(a), the inlet jet is aligned with the grid in the central region, but the top wall and corner 
regions contain the recirculating eddy. In the downstream region after reattachment, the 
streamlines are all one way, but the flow is more diffused owing to the expansion of the jet. In such a 
situation, precise a priori determination of the correct strategy is difficult. Other situations shown 
in Figure 1 are even more complex than the sudden expansion flow. Therefore in this study, 
calculations have been made with both full and semi-coarsening to evaluate their relative 
performance. In addition, corrections to satisfy integral mass balances across xy  planes are made to 
enhance convergence. 

Extension to non-Dirichlet boundary conditions 

Some of the flow situations considered in this study involve non-Dirichlet boundary conditions. 
At  the symmetry planes, the normal velocity is zero and other variables have zero normal 
derivatives. When Dirichlet conditions are not prescribed at the outflow boundary, a zero 
derivative extrapolative condition is used. Consequently, the normal velocity (located on the 
forward face of the cell) is taken to be that at the backward face of the cell and the other two 
velocities and the near-boundary pressure are calculated by solving the momentum and continuity 
equations for the near-boundary plane. 

The incorporation of non-Dirichlet conditions requires some care to prevent slowing down of 
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the convergence in comparison with an equivalent Dirichlet boundary condition. At an outflow 
boundary, because of the one-way flow, the main linkage with the outflow velocities comes only in 
the continuity equation (note: diffusion is cut off due to hybrid differencing). Therefore only the 
treatment of the continuity equation is important. In this regard, it is necessary to satisfy two 
requirements. First, the outflow velocities on all grids must satisfy the overall mass continuity. 
This means that on all grids the condition 

V-nds = 0 Q (9) 
J 

must be satisfied. Failure to satisfy this requirement will result in slow convergence or no 
convergence at all. In flows with density variations, the condition 

pV.nds = 0 i 
must be satisfied. 

The second feature of the extrapolative outflow condition is during the restriction stage from 
fine to coarse grids. When a coarse grid is reached through restriction from a finer grid, it is 
necessary to remember that the equations actually solved are different from the original flow equa- 
tions because of the additional restricted residuals. Thus, the total outflow from the boundary is 
not necessarily equal to the inflow. If the outflow velocities are modified as usual, then the 
implied outflow will be inconsistent and will lead to non-convergence. Therefore, when a coarse 
grid is reached as a restriction grid, the extrapolative boundary conditions must not be imposed. 
Instead, the coarse grid equations should be solved with restricted boundary velocities as Dirichlet 
conditions. When all coarse grids during restriction are completed, and final corrections to the 
local fine grid are made, the extrapolative conditions must be imposed. Such a practice is followed 
also for symmetry planes where zero normal flow and zero normal derivatives are enforced. 

It is necessary to point out that it is very essential to ensure that the fine and coarse grids are 
consistent between themselves. Any error usually results in non-convergence with repeated 
switching between a fine and a coarse grid. Therefore, care must be exercised in programming the 
restriction and prolongation operators and the updating of the boundary conditions. Another 
point of importance is the level of the pressure field. In incompressible flows, the pressure is 
determined up to an additive constant, i.e. the level is arbitrary. Therefore, it is necessary to 
subtract the pressure at a reference point from the calculated pressures in order to keep the level 
from becoming arbitrarily large. 

TEST CALCULATIONS 

The main purpose of this study has been to assess the rate of convergence of the earlier reported 
calculation procedure3 in more-complex three-dimensional flows representing commonly encoun- 
tered industrial flows. Therefore, the algorithm is first extended to handle non-Dirichlet conditions, 
and is ensured to converge at nearly the same rate as with Dirichlet conditions. Also, the algorithm 
is programmed into a more general computer program that can handle several flows through 
changes only in the input data. This is achieved by allowing each boundary to consist of an 
arbitrary number of segments with each segment having the flexibility of a different boundary 
condition (inflow, outflow, symmetry line and wall). 

In this study, four flow situations are considered. Each situation differs considerably from the 
others through unique flow field development and flow complexity. Each flow offers varying 
degrees of combination of zones of predominant flow with zones of flow recirculation. Therefore, 



466 S. P. VANKA 

the calculations currently performed are stringent tests of the ability of the algorithm to calculate 
practical fluid flows. 

For each geometrical configuration, two or three Reynolds numbers and two or three finite 
difference grids are considered. All calculations are started from plug distributions of axial velocity 
and null values for cross-stream velocities and pressure. Sensitivity tests are performed to 
determine the optimum under-relaxation factor. The calculations are made with full as well as 
semi-coarsening and the rate of convergence and the required CPU times on an IBM 3033 
FORI'HX compiler are tabulated for each test calculation. Some plots of the convergence history 
are given in Figures 2-10. Because the emphasis in this study has been on the rate of convergence, 
no efforts have been made to compare the flow fields with any existing data (in fact, because of the 
idealization of some of the geometries, no such experimental data may exist). However, the flow 
fields are checked for plausibility and qualitative correctness. 

For the flow in a three-dimensional expansion, a 41 area ratio is considered. A total duct length 
of eight duct heights is considered. Because of symmetry conditions, only a quarter section of the 
duct with two symmetry planes is calculated. The finest mesh used contains more than 16,000 
nodes with 16 x 16 x 64 cells in the x , y  and z directions, respectively. Three values of the flow 
Reynolds number (defined as wi ,H/v)  of 200,400 and 800 are considered. Because of the large 
expansion ratio, the recirculation zone in these calculations is quite long. Consequently it has 
been necessary to use cells of large aspect ratio. Figures 2 and 3 show the rate of convergence 
for Reynolds numbers of 400 and 800 with full and semi-coarsening. The quantity plotted is an 
average of the residuals in the four equations, defined as 

I R I = [I { (R")2 + (R")2 + (Rw)2 + (Ry2}/(NEQ)]1'2, (1 1) 

where NEQ = IMAX x JMAX x KMAX x 4 and the summation is made over all cells. R", R", R" 
and RC are point residuals (per unit cell volume) in the appropriate equations normalized by inlet 
momentum and inlet mass as appropriate. This norm of residuals is converged to a level less than 

which is observed to provide a solution of good accuracy. The optimal values of the under- 
relaxation factor, the numbers of fine grid iterations, the equivalent work units, the CPU times 

0 5 10 15 20 25 30 
FINE GRlO ITERATION NUMBER 

Figure 2. Rate of convergence for flow in a three-dimensional expansion, Re = 400: (A) 8 x 8 x 32, full coarsening; 
(B) 16 x 16 x 64, full coarsening; (C) 8 x 8 x 32, semi coarsening; (D) 16 x 16 x 64, semi coarsening. 
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10-4 I I I I I J 
0 5 10 15 20 25 30 

FINE GRID ITERATION NUMBER 

Figure 3. Rate of convergence for flow in a three dimensional expansion, Re = 800 

and the smoothing factors for these calculations are tabulated in Tables I and 11. The smoothing 
factor is defined as the rate of reduction of the residual per work unit. A work unit is time required 
for one fine grid iteration. 

From Figures 2 and 3 and Tables I and 11, the following conclusions can be drawn. First, the 
algorithm is rapidly convergent with no under-relaxation (except at Re = 900 with full 
coarsening). Typically, convergence is obtained in 15-30 fine grid iterations. Secondly, for this 
problem, semi-coarsening is seen to be advantageous over full coarsening. With semi-coarsening, 
convergence is obtained typically in 10 fine grid iterations (a total of 20 work units). The CPU times 

Table I. Convergence details with full coarsening for 
laminar sudden expansion flow, 2 = 8.0 

Re 
Grid Item* 200 400 800 

8 x 8 ~ 3 2  A 1 .o 1.0 0.8 
B 16 15 24 
C 23 22 36 
D 14.0 13.3 21.3 
E 0.80 0.75 0.83 

16 x 16 x 64 A 1 .o 1 .o 0.8 
B 30 26 27 
C 45 39 43 
D 225.0 205.0 217.0 
E 0.88 0.85 0.86 

Exponent 1.33 1.31 1 . 1 1  

*A = Optimal under-relaxation factor 
B = Number of fine grid iterations 
C = Number of work units 
D = CPU time, s 
E = Smoothing factor 
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Table 11. Convergence details with semi-coarsening for 
laminar sudden expansion flow, Z = 8.0 

Re 
Grid Item* 200 400 800 

16 x 16 x 64 

8 x 8 ~ 3 2  A 1 .o 1 .o 1 .o 
B 8 7 8 
C 14 13 17 
D 8.76 8.02 1054 
E 0.72 073 0 7 8  

A 1 .o 1 .o 1 .o 
B 10 7 8 
C 18 14 20 
D 94.0 72.0 98.0 
E 0.77 073 0.81 

Exponent 1.14 1.05 1.07 

*See legend on Table I. 

are observed to vary nearly linearly. The exponent is found to be close to unity for semi-coarsening 
but somewhat larger with full coarsening (note: exact linearity with semi-coarsening is possible by 
some ‘fine-tuning’ in the termination and switching criteria). 

Figures4-7 present the rate of convergence for the flow over a blunt body. This flow is 
geometrically inverse of the three-dimensional sudden expansion. In this case, the recirculation 
zone is established behind the blunt body instead of at the top wall. Two duct lengths of four and 
eight duct heights are considered and calculations for only one quarter of the duct cross-section are 
made. Three Reynolds numbers (winH/v) of 400,800 and 1600 are considered for each case with 
the finest grid containing 16 x 16 x 64 cells (three levels with 8 x 8 x 32 and 4 x 4 x 16 cells). 

100 c 

lo-‘ : 

J 

2 1B2 m 
W u 

- 

0 5 10 15 20 

FINE GRID ITERATION NUMBER 

Figure 4. Rate of convergence for blunt base flow, Re = 400, 2 = 4.0 
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lo-’ : 

d a 10-2 7 m 
a W 

a-3 : 

10-4 I I I I I I 
0 5 10 15 20 25 

FINE GRID ITERATION NUMBER 

Figure 5. Rate of convergence for blunt base flow, Re = 800, Z = 4.0 

Calculations with both full and semi-coarsening have been made. The results of these calculations 
are tabulated in Tables 111-VI. These timings and rates of convergence correspond to an accuracy 
level of 

For the blunt body calculations with a length of four duct heights, it is seen that both full 
and semi-coarsening converge at nearly the same rate. The exponent of work increase between 
fine and coarse grids to close to unity, as expected. However, when the duct length is increased 
to eight duct heights (with the aspect ratio of cells equal to four), the full-coarsening strategy is 
inferior to semi-coarsening. Typically, a factor of two improvement in CPU time is observed 

in the residual, as before. 

t 
b to t5 20 ;5 3’0 3f5 

FINE GRID ITERATION NUMBER 

Figure 6. Rate of convergence for blunt base flow, Re = 400, Z = 8.0 
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0 10 20 30 40 

FINE GRID ITERATION NUMBER 

Figure 7. Rate of convergence for blunt base flow, Re = 800, 2 = 8.0 

with semi-coarsening. Nevertheless the CPU times with both full and semi-coarsening are quite 
small. 

The third flow situation considered is a rectangular representation of a side-inlet dump 
combustor of a liquid-fuelled ramjet.' 5 ~ 1 6  In this geometry, the flow enters a rectangular duct from 
the top at an angle, as shown in Figure l(c). The angled injection sets up a recirculation region 
behind the inlet jet, a stagnation region at the point of impingement and a top wall recirculation 
region. In the downstream section, the flow is nearly one-way after the reattachment region. This 
problem is a three-dimensional version of the geometry recently calculated by Vanka. l 7  

For this geometry, the Reynolds number is defined to be uinZ/v. A total length of six duct 
heights is considered. Only half of the cross-section is calculated because normally there are two 

Table 111. Convergence details with full coarsening for laminar 
blunt base flow, Z = 4.0 

Re 
Grid Item* 400 800 1600 

8 x 8 ~ 3 2  A 0.9 0.9 
B 16 19 
C 24 29 
D 14.4 17.6 
E 0.76 080 

B 20 22 
C 31 35 
D 158.0 181.0 
E 0.80 0.82 

16 x 16 x 64 A 0.9 0.9 

Exponent 1.151 1.120 

0.7 
20 
30 
18.0 
0.82 

0 7  
25 
41 

207-0 
0 8 5  

1-174 

* See legend on Table 1. 
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Table IV. Convergence details with full coarsening for laminar 
blunt base flow, Z = 8.0 

Grid 
Re 

Item* 400 800 1 600 

8 x 8 ~ 3 2  A 0.8 0.8 
B 22 25 
C 32 37 
D 19.3 220 
E 0.79 0.83 

16 x 16 x 64 A 0.8 0.8 
B 31 29 
C 49 49 
D 258.0 254.0 
E 0 8 6  0.86 

Exponent 1.246 1.176 

0.8 
29 
43 
2 6 2  
0 8 7  

0 8  
32 
55 

278.0 
0.88 

1-136 

*See legend on Table I. 

inlet ports which are located symmetrically. Calculations are made for three values of the Reynolds 
number of 600, 1200 and 2400 and two grids containing 8 x 8 x 32 and 16 x 16 x 64 finite 
difference cells. The corresponding aspect ratios of the cells are 1.5 and 3.0 in the xz and y z  
planes, respectively. For this geometry also, both full and semi-coarsening are investigated. The 
calculations are initiated with plug axial velocity and null secondary velocity and pressure 
distributions. The calculation is terminated when the residual norm is below The rates of 
convergence for two of the three Reynolds numbers are shown in Figures 8 and 9. It is seen 
that convergence is obtained typically in 25 fine grid iterations for all the three Reynolds numbers. 
For this case, full coarsening is seen to be superior to semi-coarsening. The CPU times, optimal 
relaxation factors, average decreases in residuals per work unit and the numbers of fine grid 
iterations are given in Tables VII and VIII. 

1 0 - ~  
0 5 10 15 20 25 

FINE GRID ITERATION NUMBER 

Figure 8. Rate of convergence for model side-inlet combustor, Re = 600 
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to-4 
5 10 15 20 25 30 0 

FINE GRID ITERATION NUMBER 

Figure 9. Rate of convergence for model side-inlet combustor, Re = 2400 

The fourth situation calculated is the complex flow field established in a rectangular box when 
flow enters from one of the corners and exits from an opposite corner (shown in Figure l(d)). The 
geometry is a model of the flow fields in nuclear reactor (breeder) plena, heat exchangers and 
ventilation flow in buildings. For this situation, the length of the box is taken equal to four duct 
heights. Three Reynolds numbers (wi ,H/v)  equal to 200, 400 and 800 are calculated with grids 
containing 8 x 8 x 16 and 16 x 16 x 32 cells. For this geometry only full coarsening is calculated 
because there is no predominant one-way flow, and initial calculations with semi-coarsening 
displayed slow convergence. The results for this case are tabulated in Table IX. It is seen that 
convergence is rapid, although some improvement is desirable. The appropriate smoothing factors 
are given in Table IX. Figure 10 shows the rate of convergence for the intermediate Reynolds 
number of 400. 

Table V. Convergence details with semi-coarsening for laminar 
blunt base flow, Z = 4.0 

Re 
Grid Item* 400 800 1600 

8 x 8 ~ 3 2  A 1 .o 
B 16 
C 34 
D 21.1 
E 0.82 

16 x 16 x 64 A 1 .o 
B 13 
C 31 
D 162.0 
E 0.8 1 

Exponent 0.980 

1 .o 1 .o 
14 12 
30 24 
18.7 14.8 
0.80 0.76 

1 .o 0.9 
15 16 
37 40 

191.0 208.0 
0.84 0.85 

1.1 17 1.27 

*See legend on Table I. 
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Table VI. Convergence details with semi-coarsening for laminar 
blunt base flow, Z = 8.0 

Re 
Grid Item* 400 800 1600 

8 x 8 ~ 3 2  A 
B 
C 
D 
E 
A 
B 
C 
D 
E 

16 x 16 x 64 

Exponent 

1 .o 
10 
18 
11.3 
0.73 

1 .o 
12 
26 

133.6 
0.80 

1.188 

1 .o 0.9 
10 11 
19 23 
11.6 14.1 
0.74 079 

1 .o 0.9 
12 12 
26 28 

137.0 144.0 
0.79 0.82 

1.187 1.117 

*See legend on Table I. 

Table VII. Convergence details with full coarsening for model side- 
inlet combustor 

Re 
Grid Item* 600 1200 2400 

8 x 8 ~ 3 2  A 
B 
C 
D 
E 
A 
B 
C 
D 
E 

16 x 16 x 64 

Exponent 

0.8 
20 
28 
16.7 
079 

1 .o 
23 
35 

174.0 
0.82 

1.127 

0.8 
21 
30 
17.3 
0 8  1 

1 .o 
24 
37 

184.0 
0.84 

1.136 

0 8  
21 
30 
17.8 
0 8  1 

0.8 
27 
42 

214.0 
0-8 5 

1.195 

*See legend on Table I. 

CONCLUSIONS 

In this study, we have extended an earlier reported calculation procedure to more complex 
boundary conditions and assessed its performance in four different flow situations of practical 
importance. For each flow situation, the Reynolds number, the finite difference grid and the 
numerical under-relaxation factor are varied. Finite difference grids containing up to 16,000 nodes 
have been considered. In all cases rapid convergence from initially guessed simplistic distributions 
has been obtained. The CPU times required for these calculations are much smaller than other 
widely used procedures, such as the SIMPLE' algorithm and its variants. Typically, an order of 
magnitude reduction in required CPU is observed based on earlier reported performance of the 
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Table VIII. Convergence details with semi-coarsening for model 
side-inlet combustor 

Re 
Grid Item* 600 1200 2400 

8 x 8 ~ 3 2  A 
B 
C 
D 
E 
A 
B 
C 
D 
E 

16 x 16 x 64 

Exponent 

1 .o 
15 
28 
167 
080 

1 .o 
20 
44 

221.0 
0.85 

1.242 

1 .o 
18 
33 
19.7 
0.82 

1 .o 
23 
55 

272.0 
0 8 8  

1.262 

0.8 
21 
41 
24.2 
0.86 

0.9 
29 
70 

348.0 
0.9 1 

1.282 

*See legend on Table I. 

Table IX. Convergence details with full coarsening for 
flow in a rectangular box, Z = 4.0 

Re 
Grid Item* 200 400 800 

8 x 8 ~ 1 6  A 
B 
C 
D 
E 
A 
B 
C 
D 
E 

16 x 16 x 32 

Exponent 

0.8 
14 
21 

5.50 
0.78 

0.8 
18 
6630 
27 
0.8 1 

1.19 

0.8 
15 
22 
612 
0.79 

0-8 
20 
75.94 
31 
0.83 

1.20 

0.8 
21 
32 
8-61 
0.84 

0-8 
22 
88.0 
37 
0.85 

1.1 1 

*See legend on Table I 

SIMPLE algorithm. This study demonstrates that the multigrid technique combined with a 
coupled relaxation of the equations shows promise for efficiently solving multidimensional fluid 
flows of practical relevance. The coupled relaxation of the equations is advantageous in situations 
where the pressure field plays an important role in flow redistribution. In comparison with the 
work involved for assembling the coefficients in the finite difference equations, the increase in work 
due to the coupled Gauss-Seidel operator is small. This time can be easily compensated for by the 
improved rate of convergence. 

The present algorithm can be further improved in one or two ways. Currently, the FAS-FMG 
multigrid cycle is being used with an adaptive strategy. An adaptive strategy cycles through the 
grids in an automatic manner based on a rate of smoothing. Thus the procedure is more robust and 
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Figure 10. Rate of convergence for flow in a rectangular box, Re = 400: 
(A) 8 x 8 x 16, full coarsening; (B) 16 x 16 x 32, full coarsening 

does not require user specifications such as that required in fixed-cycle algorithms. However, the 
adaptive cycling can result in some wastage of work when compared with an appropriate fixed- 
cycle strategy. It will be of interest to investigate the behaviour of a multigrid cycle based on a fixed 
strategy for the flow situations considered here. Secondly, the procedure can be combined with a 
marching procedure in regions where the flow is predominantly one way. This can be done by 
combining the multigrid procedure with the partially parabolic concept of Pratap and Spalding. * 
With such a capability, it will be possible to reduce the storage as well as the CPU time, thus 
permitting better concentration of grid cells in the fully elliptic regions. Such a procedure is 
currently under development. 

The current exponents of the variation of CPU times are somewhat larger than the expected 
value of unity. This may have been due to some minor imperfections in the implementation of the 
multigrid technique as well as due to the problem complexity. Also, the solution is carried well 
beyond the truncation error limit into a region where the linearity of the multigrid technique is 
uncertain.” Currently a trilinear relation is used to prolongate both the solution and the changes 
from coarse to fine grids. Some improvement is also possible by using higher order prolongation 
operators for the solution. 

In this study, finite difference grids containing up to 16,000 nodes have been considered. 
However, in Reference 3, calculations with a quarter of a million nodes (64 x 64 x 64) were made. 
Such calculations typically required 35 minutes on the IBM 3033 machine. The computer program 
used in the current study is more general than that of Reference 3. The current computer program 
is designed to solve six additional equations (four scalars and two turbulence variables) and 
contains provision for density and viscosity variations. Consequently, it requires three times more 
storage over the earlier simpler version. Because of this increase in storage, the next higher level of 
128,000 nodes was not possible with the 8megabyte core storage available on an IBM 3033. 
However, further fine grid calculations can be performed by using machines with larger storage, 
such as the CRAY X-MP/48. 

Further work concerning the present algorithm is being focused on generalization of the 
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procedure to turbulent and reacting flows modelled through additional partial differential 
equations for scalar transport and turbulence variables. When this is completed, the procedure and 
the computer program can be used to study the multidimensional flow fields in industrial 
equipment such as furnaces, gas turbine combustors and liquid-fuelled ramjets. 

ACKNOWLEDGEMENTS 

This work was supported by the Ramjet Technology Division, Wright Patterson Air Force Base 
under an interagency agreement with Argonne National Laboratory. The author is grateful to Drs 
R. R. Craig and F. D. Stull for their support and encouragement. 

NOMENCLATURE 

Coefficient in the finite difference equation 
Elemental surface 
Right hand side term in the finite difference equations 
Restriction/prolongation operator 
Finite difference operator 
Total number of finite difference equations 
Pressure 
Approximation to solution vector 
Norm of residual in the finite difference equation 
Reynolds number 
Source term in the finite difference equation 
Velocity components in the x,y and z directions 
Velocity vector 
Co-ordinate directions 
Total length of flow domain 
Density 
Kinematic viscosity 
Tolerance adjustment factor ( = 0.2) 

Subscripts 
1 Neighbour value 
in Inlet value 
P Central value 
X,Y,Z 
new New value 
old Old value 

Superscripts 
C Continuity equation 
u, 0, w 

Values appropriate for x, y and z directions 

Values for u, u and w momentum equations 
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